Microbial Co-Culturing Technique for the Production of Novel Bioactive Compounds in Drug Discovery

Main Article Content

Maryam Latif
Muhammad Nawaz Shareef University of Agriculture, Multan, 25000
Ayesha Nadeem
Muhammad Nawaz Shareef University of Agriculture, Multan, 25000
Amara Ijaz
Muhammad Nawaz Shareef University of Agriculture, Multan, 25000
Abia Muazzam
Muhammad Nawaz Shareef University of Agriculture, Multan, 25000
Saleha Afzal
Bahuddin Zakariya University, Multan, 60800
Sana Kausar
University of Education, Lahore, 54770
Ayesha Haidar
Muhammad Nawaz Shareef University of Agriculture, Multan, 25000
Manahil Shafiq
The Women University, Multan
Abdul Samad
Gyeongsang National University, Jinju 52852

Microbial interactions within specific environments yield diverse changes, with impacts ranging from harmful to beneficial depending on the resulting compounds. Laboratory co-culturing enables microbes to interact in controlled settings, fostering the production of beneficial compounds influenced by the type of microbial interactions. Methods like direct cell-to-cell contact, shared liquid mediums, and membrane separation simulate natural microbial ecosystems, enhancing metabolic exchanges critical for drug production. Such techniques have garnered attention for their potential to activate silent metabolic pathways and stimulate cooperative interactions, leading to the discovery of novel drugs. Microbial co-culturing can uncover unexpressed biosynthetic pathways, revealing new metabolites absent in monocultures. This collaborative culturing maximizes resource use, demonstrating cost-effectiveness—an advantage in large-scale drug production. However, both positive and negative outcomes from these interactions can influence medication quality and yield. To optimize the benefits and address challenges in microbial co-culturing, ongoing studies aim to refine these techniques. This article explores microbial co-culturing methodologies and highlights co-culture examples where novel metabolite production can contribute to drug discovery.


Keywords: co-cultures, co-cultivation, microbial interactions, drug discovery, metabolites, bioactive compounds
Abdelmohsen, U. R., Grkovic, T., Balasubramanian, S., Kamel, M. S., Quinn, R. J., & Hentschel, U. (2015). Elicitation of secondary metabolism in actinomycetes. Biotechnology Advances, 33(6), 798–811. https://doi.org/10.1016/j.biotechadv.2015.06.003
Adnani, N., Chevrette, M. G., Adibhatla, S. N., Zhang, F., Yu, Q., Braun, D. R., Nelson, J., Simpkins, S. W., McDonald, B. R., & Myers, C. L. (2017). Coculture of marine invertebrate-associated bacteria and interdisciplinary technologies enable biosynthesis and discovery of a new antibiotic, keyicin. ACS Chemical Biology, 12(12), 3093–3102.
Bachar, S. C., Kadir, A. K. M. S., Wahab, S. M. R., & Al Hasan, A. (2022). Heterocyclic Anti-cancer Compounds Derived from Natural Sources with their Mechanism of Action. In Key Heterocyclic Cores for Smart Anticancer Drug–Design Part I (pp. 1–56). Bentham Science Publishers.
Balhouse, B. N., Patterson, L., Schmelz, E. M., Slade, D. J., & Verbridge, S. S. (2017). N-(3-oxododecanoyl)-L-homoserine lactone interactions in the breast tumor microenvironment: Implications for breast cancer viability and proliferation in vitro. PLoS One, 12(7), e0180372.
Bao, J., Wang, J., Zhang, X., Nong, X., & Qi, S. (2017). New furanone derivatives and alkaloids from the co?culture of marine?derived fungi Aspergillus sclerotiorum and Penicillium citrinum. Chemistry & Biodiversity, 14(3), e1600327.
Beck, A. E., Hunt, K. A., Bernstein, H. C., & Carlson, R. P. (2016). Interpreting and Designing Microbial Communities for Bioprocess Applications, from Components to Interactions to Emergent Properties. In Biotechnology for Biofuel Production and Optimization (pp. 407–432). Elsevier. https://doi.org/10.1016/B978-0-444-63475-7.00015-7
Bertrand, S., Bohni, N., Schnee, S., Schumpp, O., Gindro, K., & Wolfender, J.-L. (2014). Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnology Advances, 32(6), 1180–1204. https://doi.org/10.1016/j.biotechadv.2014.03.001
Bhattacharya, D., Lai, T. K., Saha, A., Selvin, J., & Mukherjee, J. (2021). Structural elucidation and antimicrobial activity of a diketopiperazine isolated from a Bacillus sp. associated with the marine sponge Spongia officinalis. Natural Product Research, 35(14), 2315–2323.
Bouchalova, P., & Bouchal, P. (2022). Current methods for studying metastatic potential of tumor cells. Cancer Cell International, 22(1), 394.
Cai, P., Sun, X., Wu, Y., Gao, C., Mortimer, M., Holden, P. A., Redmile-Gordon, M., & Huang, Q. (2019). Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization. Soil Ecology Letters, 1, 85–93.
Canon, F., Nidelet, T., Guédon, E., Thierry, A., & Gagnaire, V. (2020). Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co-cultures. Frontiers in Microbiology, 11, 2088.
Chen, J.-X., Xia, D.-D., Yang, X.-Q., Yang, Y.-B., & Ding, Z.-T. (2022). The antifeedant and antifungal cryptic metabolites isolated from tobacco endophytes induced by host medium and coculture. Fitoterapia, 163, 105335. https://doi.org/10.1016/j.fitote.2022.105335
Cressman, R., Halloway, A., McNickle, G. G., Apaloo, J., Brown, J. S., & Vincent, T. L. (2017). Unlimited niche packing in a Lotka–Volterra competition game. Theoretical Population Biology, 116, 1–17. https://doi.org/10.1016/j.tpb.2017.04.003
Devi, R., Kaur, T., Guleria, G., Rana, K. L., Kour, D., Yadav, N., Yadav, A. N., & Saxena, A. K. (2020). Fungal secondary metabolites and their biotechnological applications for human health. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 147–161). Elsevier. https://doi.org/10.1016/B978-0-12-820528-0.00010-7
El-Hawary, S. S., Sayed, A. M., Mohammed, R., Khanfar, M. A., Rateb, M. E., Mohammed, T. A., Hajjar, D., Hassan, H. M., Gulder, T. A. M., & Abdelmohsen, U. R. (2018). New Pim-1 kinase inhibitor from the co-culture of two sponge-associated actinomycetes. Frontiers in Chemistry, 6, 538.
Faheem, M. S., Dessouki, S. M., Abdel- Rahman, F. E. S., & Ghanem, N. (2021). Physiological and molecular aspects of heat-treated cultured granulosa cells of Egyptian buffalo (Bubalus bubalis). Animal Reproduction Science, 224, 106665. https://doi.org/10.1016/j.anireprosci.2020.106665
Ghose, R., Rice, A. J., Cortes, E., Ghose, U., Lachowski, D., & del Rio Hernandez, A. (2020). Implementation of a basement membrane invasion assay using mesenteric tissue (pp. 99–122). https://doi.org/10.1016/bs.mcb.2019.10.001
Goers, L., Freemont, P., & Polizzi, K. M. (2014). Co-culture systems and technologies: taking synthetic biology to the next level. Journal of The Royal Society Interface, 11(96), 20140065.
Gouda, S., Das, G., Sen, S. K., Shin, H.-S., & Patra, J. K. (2016). Endophytes: a treasure house of bioactive compounds of medicinal importance. Frontiers in Microbiology, 7, 1538.
Hardoim, P. R., Van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsch, A. (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3), 293–320.
Hoshino, S., Okada, M., Awakawa, T., Asamizu, S., Onaka, H., & Abe, I. (2017). Mycolic acid containing bacterium stimulates tandem cyclization of polyene macrolactam in a lake sediment derived rare actinomycete. Organic Letters, 19(18), 4992–4995.
Hoshino, S., Okada, M., Wakimoto, T., Zhang, H., Hayashi, F., Onaka, H., & Abe, I. (2015). Niizalactams A–C, multicyclic macrolactams isolated from combined culture of Streptomyces with mycolic acid-containing bacterium. Journal of Natural Products, 78(12), 3011–3017.
Hoshino, S., Wakimoto, T., Onaka, H., & Abe, I. (2015). Chojalactones A–C, cytotoxic butanolides isolated from Streptomyces sp. cultivated with mycolic acid containing bacterium. Organic Letters, 17(6), 1501–1504.
Hoshino, S., Zhang, L., Awakawa, T., Wakimoto, T., Onaka, H., & Abe, I. (2015). Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. The Journal of Antibiotics, 68(5), 342–344.
Huang, S., Ding, W., Li, C., & Cox, D. G. (2014). Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacognosy Magazine, 10(40), 410.
Hwang, K.-S., Kim, H. U., Charusanti, P., Palsson, B. Ø., & Lee, S. Y. (2014). Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnology Advances, 32(2), 255–268. https://doi.org/10.1016/j.biotechadv.2013.10.008
Jia, X., Liu, C., Song, H., Ding, M., Du, J., Ma, Q., & Yuan, Y. (2016a). Design, analysis and application of synthetic microbial consortia. Synthetic and Systems Biotechnology, 1(2), 109–117.
Jia, X., Liu, C., Song, H., Ding, M., Du, J., Ma, Q., & Yuan, Y. (2016b). Design, analysis and application of synthetic microbial consortia. Synthetic and Systems Biotechnology, 1(2), 109–117. https://doi.org/10.1016/j.synbio.2016.02.001
Kalia, V. C., Prakash, J., Koul, S., & Ray, S. (2018). Quorum sensing and its inhibition: biotechnological applications. Springer.
Katagiri, W., Sakaguchi, K., Kawai, T., Wakayama, Y., Osugi, M., & Hibi, H. (2017). A defined mix of cytokines mimics conditioned medium from cultures of bone marrow?derived mesenchymal stem cells and elicits bone regeneration. Cell Proliferation, 50(3), e12333.
Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., & Searson, P. C. (2016). In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology, 4, 12.
Knowles, S. L., Raja, H. A., Roberts, C. D., & Oberlies, N. H. (2022). Fungal–fungal co-culture: a primer for generating chemical diversity. Natural Product Reports, 39(8), 1557–1573.
König, S., Schroeder, J., Nietzsche, S., Heinekamp, T., Brakhage, A. A., Zell, R., Löffler, B., & Ehrhardt, C. (2024). The influenza A virus promotes fungal growth of Aspergillus fumigatus via direct interaction in vitro. Microbes and Infection, 26(3), 105264. https://doi.org/10.1016/j.micinf.2023.105264
Koning, N. R., Sundin, A. P., & Strand, D. (2021). Total Synthesis of (?)-Glionitrin A and B Enabled by an Asymmetric Oxidative Sulfenylation of Triketopiperazines. Journal of the American Chemical Society, 143(50), 21218–21222.
Lane, A. L., & Lundy, T. A. (2018). Interactions Between Microorganisms as Modulators of Natural Product Biosynthesis. In Chemical Ecology (pp. 261–290). CRC Press.
Li, C., Wang, J., Luo, C., Ding, W., & Cox, D. G. (2014). A new cyclopeptide with antifungal activity from the co-culture broth of two marine mangrove fungi. Natural Product Research, 28(9), 616–621.
Li, H.-T., Tang, L.-H., Liu, T., Yang, R.-N., Yang, Y.-B., Zhou, H., & Ding, Z.-T. (2020). Protoilludane-type sesquiterpenoids from Armillaria sp. by co-culture with the endophytic fungus Epicoccumsp. associated with Gastrodia elata. Bioorganic Chemistry, 95, 103503. https://doi.org/10.1016/j.bioorg.2019.103503
Li, X., Xu, H., Li, Y., Liao, S., & Liu, Y. (2023). Exploring diverse bioactive secondary metabolites from marine microorganisms using co-culture strategy. Molecules, 28(17), 6371.
Lindemann, S. R., Bernstein, H. C., Song, H.-S., Fredrickson, J. K., Fields, M. W., Shou, W., Johnson, D. R., & Beliaev, A. S. (2016). Engineering microbial consortia for controllable outputs. The ISME Journal, 10(9), 2077–2084.
Marmann, A., Aly, A., Lin, W., Wang, B., & Proksch, P. (2014). Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms. Marine Drugs, 12(2), 1043–1065. https://doi.org/10.3390/md12021043
Nai, C., & Meyer, V. (2018). From axenic to mixed cultures: technological advances accelerating a paradigm shift in microbiology. Trends in Microbiology, 26(6), 538–554.
Nonaka, K., Abe, T., Iwatsuki, M., Mori, M., Yamamoto, T., Shiomi, K., Ômura, S., & Masuma, R. (2011). Enhancement of metabolites productivity of Penicillium pinophilum FKI-5653, by co-culture with Trichoderma harzianum FKI-5655. The Journal of Antibiotics, 64(12), 769–774. https://doi.org/10.1038/ja.2011.91
Ogawa, M., García-Martínez, T., Bisson, L., Mauricio, J. C., Moreno, J., & Moreno-García, J. (2020). Mapping the intracellular metabolome of yeast biocapsules - Spherical structures of yeast attached to fungal pellets. New Biotechnology, 58, 55–60. https://doi.org/10.1016/j.nbt.2020.05.003
Oppong-Danquah, E., Budnicka, P., Blümel, M., & Tasdemir, D. (2020). Design of fungal co-cultivation based on comparative metabolomics and bioactivity for discovery of marine fungal agrochemicals. Marine Drugs, 18(2), 73.
Ortiz, A., Vega, N. M., Ratzke, C., & Gore, J. (2021). Interspecies bacterial competition regulates community assembly in the C. elegans intestine. The ISME Journal, 15(7), 2131–2145.
Padmaperuma, G., Kapoore, R. V., Gilmour, D. J., & Vaidyanathan, S. (2018). Microbial consortia: a critical look at microalgae co-cultures for enhanced biomanufacturing. Critical Reviews in Biotechnology, 38(5), 690–703.
Paschos, N. K., Brown, W. E., Eswaramoorthy, R., Hu, J. C., & Athanasiou, K. A. (2015). Advances in tissue engineering through stem cell?based co?culture. Journal of Tissue Engineering and Regenerative Medicine, 9(5), 488–503.
Piccardi, P., Ulrich, E., Garcia-Garcerà, M., Martino, R. Di, Testa, S. E. A., & Mitri, S. (2024). The evolution of reduced facilitation in a four-species bacterial community. Evolution Letters, qrae036.
Pishchany, G., Mevers, E., Ndousse-Fetter, S., Horvath Jr, D. J., Paludo, C. R., Silva-Junior, E. A., Koren, S., Skaar, E. P., Clardy, J., & Kolter, R. (2018). Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen. Proceedings of the National Academy of Sciences, 115(40), 10124–10129.
Rouf, A., Kanojia, V., Naik, H. R., Naseer, B., & Qadri, T. (2017). An overview of microbial cell culture. Journal of Pharmacognosy and Phytochemistry, 6(6), 1923–1928.
Saleski, T. E., Kerner, A. R., Chung, M. T., Jackman, C. M., Khasbaatar, A., Kurabayashi, K., & Lin, X. N. (2019). Syntrophic co-culture amplification of production phenotype for high-throughput screening of microbial strain libraries. Metabolic Engineering, 54, 232–243. https://doi.org/10.1016/j.ymben.2019.04.007
Satheesh, S., Ba-akdah, M. A., & Al-Sofyani, A. A. (2016). Natural antifouling compound production by microbes associated with marine macroorganisms — A review. Electronic Journal of Biotechnology, 21, 26–35. https://doi.org/10.1016/j.ejbt.2016.02.002
Scott, H., & Segrè, D. (2024). Metabolic Flux Modeling in Marine Ecosystems. Annual Review of Marine Science, 17.
Shin, W., & Kim, H. J. (2018). Pathomimetic modeling of human intestinal diseases and underlying host-gut microbiome interactions in a gut-on-a-chip (pp. 135–148). https://doi.org/10.1016/bs.mcb.2018.05.006
Silber, J., Kramer, A., Labes, A., & Tasdemir, D. (2016). From discovery to production: biotechnology of marine fungi for the production of new antibiotics. Marine Drugs, 14(7), 137.
Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., & Shah, J. J. F. (2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 172–189.
Sugiyama, R., Nishimura, S., Ozaki, T., Asamizu, S., Onaka, H., & Kakeya, H. (2015). 5-Alkyl-1,2,3,4-tetrahydroquinolines, New Membrane-Interacting Lipophilic Metabolites Produced by Combined Culture of Streptomyces nigrescens and Tsukamurella pulmonis. Organic Letters, 17(8), 1918–1921. https://doi.org/10.1021/acs.orglett.5b00607
Suman, A., Govindasamy, V., Ramakrishnan, B., Aswini, K., SaiPrasad, J., Sharma, P., Pathak, D., & Annapurna, K. (2022). Microbial community and function-based synthetic bioinoculants: a perspective for sustainable agriculture. Frontiers in Microbiology, 12, 805498.
Tan, Z. Q., Leow, H. Y., Lee, D. C. W., Karisnan, K., Song, A. A. L., Mai, C. W., Yap, W. S., Lim, S. H. E., & Lai, K. S. (2019). Co-culture systems for the production of secondary metabolites: Current and future prospects. The Open Biotechnology Journal, 13(1).
Treloar, N. J., Fedorec, A. J. H., Ingalls, B., & Barnes, C. P. (2020). Deep reinforcement learning for the control of microbial co-cultures in bioreactors. PLoS Computational Biology, 16(4), e1007783.
Vinale, F., Nicoletti, R., Borrelli, F., Mangoni, A., Parisi, O. A., Marra, R., Lombardi, N., Lacatena, F., Grauso, L., & Finizio, S. (2017). Co-culture of plant beneficial microbes as source of bioactive metabolites. Scientific Reports, 7(1), 14330.
Vis, M. A. M., Ito, K., & Hofmann, S. (2020). Impact of culture medium on cellular interactions in in vitro co-culture systems. Frontiers in Bioengineering and Biotechnology, 8, 911.
Wang, C., Liu, Y., Gao, X., Chen, H., Xu, X., & Zhu, L. (2018). Role of biochar in the granulation of anaerobic sludge and improvement of electron transfer characteristics. Bioresource Technology, 268, 28–35. https://doi.org/10.1016/j.biortech.2018.07.116
Xu, S., Li, M., Hu, Z., Shao, Y., Ying, J., & Zhang, H. (2023). The Potential Use of Fungal Co-Culture Strategy for Discovery of New Secondary Metabolites. Microorganisms, 11(2), 464. https://doi.org/10.3390/microorganisms11020464
Zhang, C., & Straight, P. D. (2019a). Antibiotic discovery through microbial interactions. Current Opinion in Microbiology, 51, 64–71. https://doi.org/10.1016/j.mib.2019.06.006
Zhang, C., & Straight, P. D. (2019b). Antibiotic discovery through microbial interactions. Current Opinion in Microbiology, 51, 64–71. https://doi.org/10.1016/j.mib.2019.06.006
Zhang, C., & Straight, P. D. (2019c). Antibiotic discovery through microbial interactions. Current Opinion in Microbiology, 51, 64–71. https://doi.org/10.1016/j.mib.2019.06.006