Analysis of Differences in Chitosan Nanoparticle Preparations on the Inhibitory Power of Bacteria in the Oral Cavity
Main Article Content
The oral cavity serves as a primary habitat for various bacteria, which can lead to oral health issues such as caries, periodontal disease, and thrush. Chitosan nanoparticles are known for their antibacterial properties and have potential as agents to inhibit bacterial growth in the oral cavity. This study aims to evaluate and compare the antibacterial efficacy of chitosan nanoparticles at different concentrations (1%, 2%, and 3%) against specific oral bacteria, including Streptococcus mutans (caries-causing bacteria), Porphyromonas gingivalis (periodontal disease bacteria), and Streptococcus sanguinis (thrush bacteria). A true experimental design was applied with in vitro testing on bacterial cultures, followed by in vivo testing on male Wistar rats aged 4 months to observe practical efficacy. The most effective concentration was then formulated into three dosage forms: gel, toothpaste, and solution. Data analysis was conducted using ANOVA, followed by Duncan's Multiple Range Test to compare the inhibitory effects across the formulations. Results indicated that the 3% chitosan mouthwash had the highest bacterial inhibitory effect, with an inhibition zone of 1.30 cm, outperforming other formulations, while the 1.5% chitosan gel showed the lowest efficacy at 0.91 cm. These findings suggest that different chitosan formulations exhibit varying levels of antibacterial activity, with 3% chitosan mouthwash demonstrating the most potential. This research highlights the implications of chitosan nanoparticles as effective antibacterial agents in oral care products, promoting future exploration of chitosan-based formulations for improved oral health solutions.
Cakasana, N., Suprijanto, J., & Sabdono, A. (2014). Aktivitas Antioksidan Kitosan yang Diproduksi dari Cangkang Kerang Simping (Amusium sp) dan Kerang Darah (Anadara sp). Journal of Marine Research, 3(4), 395–404.
Damayanti, W., Rochima, E., & Hasan, Z. (2016). Application of chitosan as antibacterial for Pangasius fillet at low temperature storage. Jurnal Pengolahan Hasil Perikanan Indonesia, 19(3), 321–328.
Elgreu, T., Lee, S., Wen, S., Elghadafi, R., Tangkham, T., Ma, Y., Liu, B., Dibart, S., & Tang, X. (2022). The pathogenic mechanism of oral bacteria and treatment with inhibitors. Clinical and Experimental Dental Research, 8(1), 439–448.
Fauziyyah, J. S. (2024). Uji Daya Hambat Antibakteri Nanopartikel Ekstrak Etanol Bunga Telang (Clitoria Ternatea) Terhadap Bakteri Escherichia coli (E. coli).
Gajdács, M., Urbán, E., Stájer, A., & Baráth, Z. (2021). Antimicrobial resistance in the context of the sustainable development goals: A brief review. European Journal of Investigation in Health, Psychology and Education, 11(1), 71–82.
Hajardhini, P., Susilowati, H., & Yulianto, H. D. K. (2020). Rongga mulut sebagai reservoir potensial untuk infeksi Pseudomonas aeruginosa. Odonto: Dental Journal, 7(2), 125–133.
Kaligis, F. R. (2017). Identifikasi bakteri pada plak gigi pasien di Puskesmas Bahu dan uji resistensi terhadap antibiotik kloramfenikol dan linkosamida (klindamisin). Pharmacon, 6(3).
Khan, R. A., Devi, K. R., Pratim Barman, M., Bhagawati, M., & Sarmah, R. (2023). Bacteria in the oral cavity of individuals consuming intoxicating substances. PLOS ONE, 18(5), e0285753. https://doi.org/10.1371/journal.pone.0285753
Khasanah, I. H., Sae-Sia, W., & Damkliang, J. (2019). The effectiveness of oral care guideline implementation on oral health status in critically ill patients. SAGE Open Nursing, 5, 2377960819850975.
Nanggita, P. P., Mu’arofah, B., Imasari, T., & Santoso, K. (2023). Deteksi Bakteri Staphylococcus sp. pada Swab Rongga Mulut Mahasiswa D3 TLM IIK Bhakti Wiyata Kediri yang Memakai Kawat Gigi. Jurnal Sintesis: Penelitian Sains, Terapan Dan Analisisnya, 4(1).
Ong, T. H., Chitra, E., Ramamurthy, S., Siddalingam, R. P., Yuen, K. H., Ambu, S. P., & Davamani, F. (2017). Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PloS One, 12(3), e0174888.
Paomephan, P., Assavanig, A., Chaturongakul, S., Cady, N. C., Bergkvist, M., & Niamsiri, N. (2018). Insight into the antibacterial property of chitosan nanoparticles against Escherichia coli and Salmonella Typhimurium and their application as vegetable wash disinfectant. Food Control, 86, 294–301. https://doi.org/10.1016/j.foodcont.2017.09.021
Riskesdas, T. (2019). Laporan nasional RISKESDAS 2018. Jakarta: Badan Penelitian Dan Pengembangan Kesehatan.
Rusdi, B., Aryani, R., & Yuniarni, U. (2023). Aktivitas Prebiotik Pisang Serta Efeknya Terhadap Kesehatan Dan Penyakit. Jurnal Ilmiah Farmasi Farmasyifa, 6(2), 172–186.
Sundari, D., & Almasyhuri, A. (2019). Uji aktivitas antiseptik ekstrak etanol daun sirih (Piper betle Linn.) dalam obat kumur terhadap Staphylococcus aureus secara in Vitro. Jurnal Kefarmasian Indonesia, 10–18.
Tenorio-Soto, K., Gutiérrez-Marín, N., Ramírez-Mora, T., & Altamirano-Silva, P. (2024). Microbiota of dental caries in primary teeth of a Costa Rican Child population. Odovtos-International Journal of Dental Sciences, 26(1), 130–138.
Valm, A. M. (2019). The Structure of Dental Plaque Microbial Communities in the Transition from Health to Dental Caries and Periodontal Disease. Journal of Molecular Biology, 431(16), 2957–2969. https://doi.org/10.1016/j.jmb.2019.05.016
Wihardja, R., & Setiadhi, R. (2018). Kondisi kesehatan gigi dan mulut siswa SDK Yahya. Jurnal Kedokteran Gigi Universitas Padjadjaran, 30(1), 26–32.
Yilmaz Atay, H. (2019). Antibacterial activity of chitosan-based systems. Functional Chitosan: Drug Delivery and Biomedical Applications, 457–489.